Indexing Based on Scale Invariant Interest Points

نویسندگان

  • Krystian Mikolajczyk
  • Cordelia Schmid
چکیده

This paper presents a new method for detecting scale invariant interest points. The method is based on two recent results on scale space: 1) Interest points can be adapted to scale and give repeatable results (geometrically stable). 2) Local extrema over scale of normalized derivatives indicate the presence of characteristic local structures. Our method first computes a multi-scale representation for the Harris interest point detector. We then select points at which a local measure (the Laplacian) is maximal over scales. This allows a selection of distinctive points for which the characteristic scale is known. These points are invariant to scale, rotation and translation as well as robust to illumination changes and limited changes of viewpoint. For indexing, the image is characterized by a set of scale invariant points; the scale associated with each point allows the computation of a scale invariant descriptor. Our descriptors are, in addition, invariant to image rotation, to affine illumination changes and robust to small perspective deformations. Experimental results for indexing show an excellent performance up to a scale factor of 4 for a database with more than 5000 images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Matching Method for Scale and Rotation Invariant Local Descriptors and Its Application to Image Indexing

Interest point matching is widely used for image indexing. In this paper we introduce a new distance measure between two local descriptors instead of conventional Mahalanobis distance to improve matching accuracy. From experiments with synthetic images we show that the error distribution of local jet is gaussian but the distribution of the descriptors derived from local jet is not gaussian. Bas...

متن کامل

Content-Based Image Retrieval by Interest Points Matching and Geometric Hashing

This paper presents a content-based image retrieval technique based on interest points matching and geometric hashing. We estimate points with significant luminance variations as interest points. A small region around the interest point is located as an image patch. Low-level features are extracted to describe each image patch. To provide geometric invariant image matching, we index the image p...

متن کامل

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

Object Recognition and

This contribution presents a video analysis system which provides automatic content analysis and enables manual and semi-automatic annotation. In particular, we focus on object recognition and visual video indexing. We briefly review the current state of the art based on interest point extraction (e.g. Harris points, Maximally Stable Extremal Regions) and calculation of invariant descriptors ar...

متن کامل

SIFT Detectors for Matching Aerial Images in Reduced Space

In this paper we propose a novel approach for matching cartographic images over detecting interest points invariant to scale and affine transformations. Our scale and affine invariant detectors are based on the following recent results: Interest points extracted with the SIFT detector which is adapted to affine transformations and give repeatable results (geometrically stable). This provides a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001